Фармакология наркоза инертного газа. Предотвращение наркоза инертным газом

Обновлено: 30.09.2022

Наркоз (греч. narkoo - делать оцепенелым, усыплять) - вызванное наркозными средствами бесчувственное, бессознательное состояние, которое сопровождается утратой рефлексов, снижением тонуса скелетных мышц, но при этом функции дыхательного, сосудодвигательного центров и работа сердца остаются на уровне, достаточном для продления жизни.

До открытия наркоза операции проводили только по неотложные показаниям (ампутация конечности в случае открытого перелома, дренирование абсцесса). Для обезболивания использовали алкоголь, продукты индийской конопли, опий. Хирургические вмешательства часто сопровождались болевым шоком и заканчивались смертью пациента.

Введение наркоза в хирургическую практику в 40-е годы XIX века отвечало возрожденным идеям гуманизма и стало революционным событием в медицине.

Наркозные средства вводят ингаляционным и неингаляционным пу­тем (в вену, мышцы, ректально).

Ингаляционные наркозные средства должны удовлетворять ряду требований:

• Быстрое наступление наркоза и быстрый выход из него без неприятных ощущений;

• Возможность управления глубиной наркоза;

• Адекватное расслабление скелетных мышц;

• Большая широта наркозного действия, минимальные токсические эффекты.

Применение в современной анестезиологии средств ультракорот­кого действия для вливания в вену, сильных наркотических анальгетиков, миорелаксантов уменьшает актуальность первых трех требований. Принципиальное значение имеет только безопасность. Явность ингаляционных анестетиков оценивают по минимальной альвеолярной концентрации (МАК). Доза, создающая 1 МАК, предотвращает у половины пациентов движения в ответ на хирургическое вмешательство.

Механизм действия ингаляционных наркозных средств (теории наркоза)

Наркоз вызывают вещества различного химического строения - инертные газы (ксенон), простые неорганические (азота закись) и орга­нические (хлороформ) соединения, сложные органические молекулы (галоалканы, эфиры).

Первые объяснения механизма наркоза базировались на физи­ко-химических свойствах препаратов. Согласно теории липидорастворимости, наблюдается корреляция между растворимостью нар­козных средств в липидах мембран нервной ткани и анестезирую­щей активностью (Г. Мейер, 1899; Э. Овертон, 1901), В дальней­шем было установлено, что общие анестетики сильнее подавляют синаптическую передачу нервных импульсов, чем проведение по ак­сонам.

Иван Петрович Павлов называл наркоз функциональной асинапсией. Николай Евгеньевич Введенский полагал, что общие анестетики действуют на нервную систему как сильные раздражители и вызывают фазы парабиоза, уменьшая лабильность отдельных нейронов и ЦНС в целом.

По современным данным общие анестетики изменяют физико-хи­мические свойства липидов мембран нейронов и нарушают взаимодействие липидов с белками ионных каналов. При этом уменьшается транспорт в нейроны ионов натрия, сохраняется выход менее гидратированных ионов калия, в 1,5 раза возрастает проницаемость хлорных каналовов, управляемых ГАМКд-рецепторами. Итогом этих эффектов становится гиперполяризация с усилением процессов торможения.

Общие анестетики подавляют вход в нейроны ионов кальция, блокируя Н-холинорецепторы; снижают подвижность Са 24 в мембране, поэтому блокируют кальцийзависимое выделение возбуждающих нейромедиаторов.

Наиболее чувствительны к действию общих анестетиков полисинаптические системы ЦНС - кора больших полушарий (10 13 -10 14 синапсов), таламус, ретикулярная формация, спинной мозг. К наркозу устойчивы дыхательный и сосудодвигательный центры продолговатотого мозга.

Неодинаковая реакция структур ЦНС на действие общих анестетиков приво-т к последовательному развитию стадий наркоза. Классические 4 стадии наркоза вызывает эфир:

1. Анальгезия (3-8 минут)

Помрачение сознания (нарушение ориентации, бессвязная речь), утрачива­ется болевая, затем температурная и тактильная чувствительность, в конце стадии наступают амнезия и потеря сознания (угнетение коры больших полушарий, " таламуса, ретикулярной формации).

2. Возбуждение (делирий; 1-3 минуты в зависимости от индивидуальных особенностей больного и квалификации анестезиолога)

Бессвязная речь, двигательное беспокойство с попытками пациента уйти с операционного стола, повышаются рефлексы, тонус скелетных мышц, возможна рвота из-за раздражения желудка проглатываемой слизью, содержащей эфир. Типичные симптомы возбуждения - гипервентиляция, рефлекторная секреция ад­реналина с тахикардией и артериальной гипертензией (операция недопустима).

В стадии возбуждения выключается внутрицентральное торможение в коре больших полушарий, а также ослабляется тормозящее влияние коры на базальные ганглии, мозжечок, ствол мозга и спинной мозг.

3. Хирургический наркоз, состоящий из 4 уровней (наступает через 10-15 минут после начала ингаляции)

Уровень движения глазных яблок (легкий наркоз)

Кругообразные движения глазных яблок, сужение зрачков с сохранением живой реакции на свет (растормаживаются центры глазодвигательного нерва в среднем мозге), угасают поверхностные кожные рефлексы, сохраняется актив­ное дыхание при участии межреберных мышц и диафрагмы,

Уровень роговичного рефлекса (выраженный наркоз)

Глазные яблоки фиксированы, зрачки умеренно сужены, роговичный, гло­точный и гортанный рефлексы утрачены, тонус скелетных мышц снижается в результате распространения торможения на базальные ганглии, ствол головно­го мозга и спинной мозг.

Уровень расширения зрачков (глубокий наркоз)

Зрачки расширяются, вяло реагируют на свет, рефлексы утрачены, тонус скелетных мышц снижен, дыхание поверхностное, частое, приобретает диафрагмальчый характер.

Глубокий наркоз непосредственно граничит с агональной стадией. В настоящее время анестезиологи используют для проведения хирургических операций уровень выраженного наркоза, а полное расслабление скелетных мышцы обечивают введением миорелаксантов.

2.1.3.1.1. Средства для ингаляционного наркоза

Для ингаляционного наркоза используются летучие жидкости: эфир диэтиловый, галотан (фторотан), трихлороэтилен (трихлорэтилен), метоксифлуран и другие, а также газы: динитроген оксид (азота закись), циклопропан. Ингаляционный наркоз легко управляем, так как ингаляционные наркозные средства быстро всасываются и также быстро выводятся через дыхательные пути.

Эфир для наркоза или диэтиловый эфир -летучая жидкость, разлагающаяся на свету и в тепле под влиянием кислорода воздуха, имеющая температуру кипения 34-36°С. Он первым нашел широкое применение в качестве средства для наркоза.

Эфир является клеточным ядом и при местном применении оказывает небольшое противомикробное и местноанестезирующее действие, вызывая гиперемию слизистых оболочек. После фазы раздражения наблюдается понижение чувствительности тканей. При температуре тела он быстро испаряется, охлаждая и подсушивая ткани, что позволяет использовать эфир как подсушивающее, дезинфицирующее и местноанестезирующее средство.

При вдыхании паров эфира возникает наркоз. Препарат обладает выраженной наркотической активностью, большой шпротой наркотического действия и сравнительно малой токсичностью. Однако вдыхание эфира тягостно для пациента, наркоз развивается медленно (через 12-20 мин) стадия наркоза длительная, что затрудняет введение в наркоз и требует проведения премедикации (болеутоляющими, успокаивающими, миорелаксантами и М-холиноблокирующими средствами). Пробуждение после эфирного наркоза наступает через 20-40 мин, и в течение нескольких часов наблюдается посленаркозный сон. Длительно сохраняется анальгезия. Для уменьшения расхода эфира, а следовательно, и осложнений, используется эфирно-кислородный наркоз, а также сочетание эфира с азота закисью, фторотаном и другими средствами для наркоза.

Осложнения от применения эфирного наркоза связаны в основном с местным раздражающим и охлаждающим действием препарата. Раздражающее действие эфира на слизистую оболочку дыхательных путей может приводить к ларингоспазму, рефлекторным изменениям дыхания и сердечной деятельности, гиперсекреции, тошноте и рвоте. После эфирного наркоза возможно развитие бронхопневмонии.

Следует помнить, что эфир легко воспламеняется, а в смеси с кислородом и азота закисью - взрывается, поэтому при таком наркозе не следует применять рентгено- и электроаппаратуру (бормашину, электроножи и т.д.).

Фторотан - летучая невоспламеняющаяся жидкость. Введение в наркоз происходит быстро (через 3-5 мин), стадия возбуждения короткая. Фторотановый наркоз легко управляем. По активности фторотан в 3-4 раза превосходит эфир. Пробуждение наступает через 5-10 мин, посленаркозный сон непродолжителен. Препарат не раздражает слизистые оболочки, не вызывает нежелательных рефлекторных реакций, тошнота и рвота в посленаркозном периоде бывают редко. У фторотана практически нет анальгезирующего действия, что требует раннего назначения болеутоляющих средств после операции. Он не пригоден для ингаляционной анальгезии. Фторотан умеренно угнетает дыхательный центр. Пропорционально глубине наркоза ослабляет сократимость миокарда и снижает артериальное давление. Брадикардия, вызываемая фторотаном, связана с возбуждением блуждающего нерва и снимается введением М-холиноблокаторов (атропина). Как и другие галоидсодержащие анестетики, фторотан повышает чувствительность миокарда к адреналину, что может привести к возникновению сердечных аритмий. На фоне фторотанового наркоза не следует применять адреналин и норадреналин. Из побочных эффектов фторотана следует отметить возможность поражения печени, особенно при повторном применении.

Трихлорэтилен -летучая жидкость, в обычных (для анестезиологии) концентрациях не воспламеняется и не взрывается. Мощное наркозное средство. Дает быстрое введение в наркоз, хорошую анальгезию как при введении в наркоз, так и после пробуждения, быстрый выход из наркоза. Применяется для кратковременного наркоза, для анальгезии при небольших хирургических вмешательствах или болезненных манипуляциях, для аутоанальгезии при сильных болях, не снимаемых наркотическими анальгетиками (инфаркт, травмы, невралгия тройничного нерва). Поскольку трихлорэтилен, повышая чувствительность сердца к катехоламинам, может спровоцировать аритмию, при его применении не следует добавлять к местным анестетикам адреналин или норадреналин.

Метоксифлуран, обладающий высокой наркотической и анальгетической активностью, дает медленное введение в наркоз и постепенный выход из наркоза, длительное сохранение анальгезии. Однако он нефротоксичен и аритмогенен (повышает чувствительность миокарда к катехоламинам). В связи с токсичностью для самостоятельного наркоза не применяется. Иногда используется для наркоза в стадии анальгезии и для аутоанальгезии.

Хлороформ и хлорэтил, являющиеся мощными наркозными средствами, имеют малую широту наркотического действия и высокую токсичность, в связи с чем в настоящее время исключены из практики анестезиологии.

Хлороформ - клеточный яд, вызывающий раздражение тканей с последующим понижением их чувствительности, что позволяет назначать его для "отвлекающей терапии".

Хлорэтил -летучая жидкость, имеющая температуру кипения 12°С. При нанесении на кожу хлорэтил быстро испаряется, вызывая сильное охлаждение, ишемию тканей, понижение чувствительности. Это свойство хлорэтила можно использовать для кратковременного местного обезболивания (холодовая анестезия) при проведении небольших поверхностных операций. Иногда хлорэтил применяют для криотерапии, при невралгиях, рожистом воспалении, термических ожогах и т.д.

Азота закись -бесцветный газ, не воспламеняется, но поддерживает горение. Вдыхание азота закиси обеспечивает быстрое введение в наркоз и быстрое пробуждение. Препарат обладает слабой наркозной активностью и не дает достаточного расслабления мышц, поэтому используют смесь 80% азота закиси и 20% кислорода, и перед наркозом проводят медикаментозную подготовку пациента. Часто ее сочетают с другими общими анестетиками (эфиром, фторотаном). Так как азота закись вызывает состояние опьянения и выраженную анальгезию, она может назначаться для купирования сильных болевых приступов (при инфаркте, панкреатите, невралгии и т.д.), не снимающихся наркотическими анальгетиками (морфином, фентанилом и т.д.). Для получения длительной анальгезии азота закись можно вводить подкожно (не раздражает ткани, малотоксична).

Циклопропан -бесцветный газ, не раздражающий слизистые оболочки, обладающий высокой анальгетической и наркозной активностью.

2.1.3.1. Средства для наркоза (общие анестетики)

Средства для наркоза, оказывая угнетающее влияние на центральную нервную систему, вызывают временную утрату сознания, угнетение всех видов чувствительности, снижение мышечного тонуса и рефлекторной активности при умеренном торможении жизненно важных центров продолговатого мозга. Препараты этой группы имеют важное значение для хирургии, развитие которой тесно связано с усовершенствованием обезболивания. Любая операция сопровождается сильными болевыми ощущениями, которые при недостаточном обезболивании могут вести к развитию болевого шока и гибели пациента. Средства для наркоза позволяют полностью снять болевые ощущения и их негативное влияние на организм, получить наиболее эффективное хирургическое обезболивание.

Впервые общий анестетик (азота закись) был применен Уэллсом в 1844 году при удалении зубов, но датой открытия наркоза считают 1886 год, когда Мортон публично продемонстрировал наркотическое действие эфира диэтилового. Известный хирург Н.И.Пирогов в том же году организовал массовое применение эфира перед операциями на поле боя.

По способу введения в организм все наркозные средства можно разделить на средства для ингаляционного наркоза, вводимые в организм через дыхательные пути, и для неингаляционного наркоза, вводимые, как правило, внутривенно.

Механизм действия наркозных препаратов заключается в блокаде межнейронной (синаптической) передачи возбуждения в центральной нервной системе. Единой теории, объясняющей их влияние на синаптическую передачу, нет. Данный эффект связывают с физико-химическими свойствами препаратов (способностью растворяться в липидах, содержание которых в нервной ткани повышено, нарушать окислительные процессы, адсорбироваться на мембране нервных клеток, образовывать нестойкие связи с белками нейронов центральной нервной системы, формировать с водой кристаллогидраты и т.д.). Несмотря на различие в биохимическом и физико-химическом механизме действия, все наркозные средства влияют на мембрану нейронов, изменяя ее проницаемость для ионов натрия и калия, нарушая процесс деполяризации. Это препятствует возникновению потенциала действия, в результате блокируется межнейронная передача возбуждения. Возможно, некоторые препараты действуют на пресинаптическом уровне, нарушая освобождение медиаторов, обусловливающих межнейронные контакты. В зависимости от химического строения и физико-химических свойств различные препараты имеют особенности влияния на нейроны, что отражается на их фармакодинамике. Чувствительность синапсов различных отделов центральной нервной системы к наркозным средствам неодинакова: наиболее чувствительны к действию химических агентов синапсы восходящей активирующей системы ретикулярной формации ствола мозга и коры головного мозга, наиболее устойчивы - жизненно важные центры продолговатого мозга. Это обусловливает наличие нескольких периодов в течение наркоза - выделяют 4 основные стадии, выраженность которых может варьировать в зависимости от особенности действия отдельных общих анестетиков.

Сразу после введения в организм наркозного препарата развивается стадия анальгезии или оглушения (первая стадия). Она характеризуется резким снижением болевой чувствительности, спутанностью сознания, но контакт с пациентом сохраняется. Хотя продолжительность стадии анальгезии невелика (5-10 мин), она может использоваться для проведения кратковременных операций. Стадию анальгезии можно удлинить, используя перед наркозом (премедикация) болеутоляющие и успокаивающие средства и поддерживая во вдыхаемом воздухе определенную концентрацию наркозного вещества.

В стадии возбуждения (вторая стадия) наблюдается полное выключение сознания, двигательное и речевое возбуждение, значительные колебания артериального давления, ритма сердца и дыхания. Возникновение этой стадии объясняется полным угнетением коры и снятием ее тормозящего влияния на нижележащие отделы, что сопровождается вторичным возбуждением подкорковых структур и повышением рефлекторной деятельности. В этот период нельзя проводить каких-либо хирургических вмешательств, так как возможна остановка дыхания, фибрилляция и остановка сердца.

В стадии хирургического наркоза (третья стадия) угнетение коры, подкорковых образований и спинного мозга приводит к полной утрате сознания, чувствительности, рефлексов, расслаблению скелетной мускулатуры, нормализуется артериальное давление, урежается пульс, дыхание становится ритмичным, поскольку сохраняется функция жизненно важных центров продолговатого мозга. Большинство хирургических вмешательств проводится в этой стадии.

Сразу после прекращения вдыхания наркозного средства начинается стадия пробуждения, при этом функции центральной нервной системы восстанавливаются в обратной последовательности. При передозировке наркозных препаратов наблюдается глубокое угнетение жизненно важных центров продолговатого мозга, нарушается дыхание и кровообращение, резко расширяются зрачки, смерть наступает от паралича дыхательного центра и остановки дыхания.

В чистом виде мононаркоз в настоящее время применяется редко. Для более быстрого введения в наркоз и уменьшения осложнений от применения общих анестетиков используется комбинированный и смешанный наркоз, а для подготовки к операции проводится премедикация - пациенту назначают успокаивающие и болеутоляющие препараты. При смешанном наркозе используют сочетание некоторых средств для наркоза (например, эфир, фторотан и закись азота), что позволяет снизить дозу каждого из них, а следовательно, и токсичность. Комбинированный наркоз основан на сочетании неингаляционного и ингаляционного наркоза. Современный уровень развития анестезиологии (науки, изучающей возможные варианты обезболивания) позволяет подбирать индивидуальную схему премедикации и наркоза для каждого пациента с учетом его общего состояния, характера заболевания и планируемого объема хирургического вмешательства. Наркотизирование проводит врач- анестезиолог, который должен в совершенстве владеть приемами реаниматологии, то есть восстановления утраченных жизненных функций, что может наблюдаться во время наркотизирования и проведения операций. Врач-анестезиолог должен не только снять боль, но и позволить хирургу провести операцию с наименьшими нарушениями функций различных органов и систем, с наименьшими затратами жизненных сил организма пациента. Активность общих анестетиков повышается введением успокаивающих и болеутоляющих препаратов. Для расслабления скелетной мускулатуры используют миорелаксанты, для устранения отрицательных вагусных рефлексов применяют М-холиноблокаторы (атропин и другие). При необходимости в предоперационную терапию включают сердечно-сосудистые, антигистаминные и другие препараты.

К средствам для наркоза предъявляют определенные требования. Они должны иметь высокую наркотическую активность, обеспечивать хорошую управляемость наркозом, то есть давать быстрое введение (желательно без стадии возбуждения) и выведение из наркоза. хорошую регулируемость его глубины, малую токсичность, большую широту наркотического действия, т.е. достаточный диапазон между концентрацией препарата в крови, вызывающей стадию наркоза, и концентрацией, вызывающей угнетение жизненно важных центров продолговатого мозга.

Наркозные средства

Для общего обезболивания (наркоза, или общей анестезии) в современной анестезиологии применяют различные лекарственные средства. В зависимости от их физико-химических свойств и способов применения их делят на ингаляционные и неингаляционные.

К средствам для ингаляционного наркоза относится ряд легко испаряющихся (летучих) жидкостей (галотан, эфир для наркоза) и газообразных веществ (главным образом закись азота). В связи с хорошими наркотизирующими свойствами и безопасностью (не воспламеняются и не взрывоопасны) фторированные углеводороды, особенно галотан, нашли широкое применение в анестезиологической практике, вытеснив ранее применявшийся Циклопропан и ограничив применение эфира для наркоза. Потерял значение как средство для наркоза хлороформ.

К средствам для неингаляционного наркоза относят барбитураты (тиопентал натрий) и небарбитуровые препараты (кетамин и др.).

Для введения в наркоз (индукции) чаще применяют неингаляционные наркотические средства (барбитураты и др.), вводимые внутривенно или внутримышечно, а основной наркоз проводят ингаляционными или неингаляционными средствами для наркоза. Основной наркоз может быть однокомпонентным — простым (мононаркоз) или многокомпонентным — комбинированным. Вводный наркоз может осуществляться также соответствующими концентрациями средств для ингаляционного наркоза (азота закись в смеси с кислородом и др.).

В процессе подготовки к операции проводится премедикация, включающая назначение больному успокаивающих, анальгетических, холинолитических, сердечно-сосудистых и других препаратов. Эти средства применяют с целью ослабить отрицательное влияние на организм эмоционального стресса, предшествующего операции, и предупредить возможные побочные явления, связанные с наркозом и оперативным вмешательством (рефлекторные реакции, нарушения гемодинамики, усиление секреции желез дыхательных путей и др.). Премедикация облегчает проведение наркоза: возможно уменьшение концентрации или дозы применяемого для наркоза средства, менее выражена фаза возбуждения и др.

Во время наркоза и при выходе из него также используют анальгетики, миорелаксанты (или декураризирующие средства), сердечно-сосудистые препараты и др., способствующие сохранению функций организма на физиологическом уровне.

В последние годы для общего обезболивания широко пользуются внутривенным введением различных сочетаний нейротропных средств, стремясь получить так называемую сбалансированную анестезию без использования традиционных ингаляционных средств для наркоза. Одним из методов такого вида общего обезболивания, основанным на применении нейролептиков (дроперидол) в сочетании с анальгетиками (фентанил, тримеперидин и др.), является нейролептанальгезия (НЛА). Другой многокомпонентный метод — атаральгезия, или транквиланальгезия, также предусматривает использование анальгетиков (фентанил, тримеперидин и др.) в сочетании с транквилизаторами (диазепам, феназепам или др.), натрия оксибатом, холинолитиками (атропин, метациния йодид) и другими препаратами.

Одним из методов общего обезболивания является введение наркотических анальгетиков (морфин или др.) в спинномозговой канал.

Механизмы действия и виды анестетиков



Анестетики разделяют на:

  1. Местные
  2. Общие:
    а) ингаляционные - летучие жидкости и газы
    б) неингаляционные (внутривенные)




Таблица 1

1. Местные анестетики

Местные анестетики обратимо снижают возбудимость чувствительных нервных окончаний и блокируют проведение афферентных импульсов в нервных стволах в зоне непосредственного применения, используются для устранения боли.

Первый препарат этой группы — кокаин, был выделен в 1860 г. Альбертом Ньюманом из листьев южноамериканского кустарника Erythroxylon coca. Ньюман, как многие химики прошлого, попробовал новое вещество на вкус и отметил онемение языка. Профессор Военно-медицинской академии Санкт-Петербурга Василий Константинович Анреп в 1879г. подтвердил способность кокаина вызывать анестезию. В экспериментах на лягушках он обнаружил, что кокаин влияет «парализующим образом» на окончания чувствительных нервов. В. К. Анреп исследовал действие кокаина на себе: инъекция кокаина в дозе 1 — 5 мг под кожу сопровождалась полной анестезией — укол булавкой, прижигание тлеющей спичкой не вызывали боли. Аналогичный эффект наблюдался при закапывании раствора кокаина в глаз и нанесении его на слизистую оболочку языка.

Местные анестетики классифицируют на сложные эфиры (анестезин, дикаин, новокаин) и замещенные амиды (лидокаин, тримекаин, бупивакаин). Местные анестетики — сложные эфиры подвергаются гидролизу псевдохолинэстеразой крови и действуют в течение 30 — 60 мин. Их эффект пролонгируют антихолинэстеразные средства (прозерин). Продукт гидролиза — n-амино-бензойная кислота ослабляет бактериостатическое влияние сульфаниламидов. Замещенные амиды кислот инактивируются монооксигеназной системой печени в течение 2 — 3 ч. Бупивакин вызывает местную анестезию продолжительностью 3 — 6 ч, после ее прекращения длительно сохраняется анальгетический эффект.

С точки зрения практического применения анестетики подразделяют на следующие группы:

  1. Средства, применяемые для поверхностной (терминальной) анестезии: Кокаин, Дикаин, Анестезин, Пиромекаин
  2. Средства, применяемые преимущественно для инфильтрационной и проводниковой анестезии: Новокаин, Бупивакаин
  3. Средства, применяемые для всех видов анестезии: Лидокаин, Тримекаин

Механизм действия

Местные анестетики представляют собой третичные азотистые основания. Они состоят из гидрофильной и липофильной частей, соединенных эфирной или амидной связями. Механизм действия определяет липофильная часть, имеющая ароматическую структуру. Для нанесения на слизистые оболочки и кожу и парентерального введения применяют водные растворы хлористоводородных солей местных анестетиков. В слабощелочной среде тканей (рН=7,4) соли гидролизуются с освобождением оснований. Основания местных анестетиков растворяются в липидах мембран нервных окончаний и стволов, проникают к внутренней поверхности мембраны, где превращаются в ионизированную катионную форму.


Рисунок 1 | Механизм действия местных анестетиков

Рецепторы для местных анестетиков локализованы в S6-сегменте IV домена внутриклеточной части натриевых каналов. Связываясь с рецепторами, катионы местных анестетиков пролонгируют инактивированное состояние натриевых каналов, что задерживает развитие следующего потенциала действия. Местные анестетики не взаимодействуют с закрытыми каналами в период потенциала покоя. Таким образом, в зоне нанесения местных анестетиков не развиваются потенциалы действия, что сопровождается блоком проведения нервных импульсов. Избирательное влияние местных анестетиков на чувствительные афферентные нервы обусловлено генерацией в них длительных (более 5 мс) потенциалов действия с высокой частотой.

В первую очередь местные анестетики блокируют безмиелиновые С и миелиновые Аδ и Аβ волокна (афферентные пути, проводящие болевые и температурные раздражения; вегетативные нервы). На волокна, окруженные миелиновой оболочкой, местные анестетики действуют в области перехватов Ранвье. Толстые миелиновые волокна (афферентные пути, проводящие тактильные раздражения; двигательные нервы) слабее реагируют на местные анестетики. Кроме того, устойчивость двигательных нервов к анестезии обусловлена низкочастотными короткими (менее 5 мс) потенциалами действия. В очаге воспаления в условиях ацидоза нарушаются диссоциация хлористоводородных солей местных анестетиков и образование их свободных липидорастворимых оснований, поэтому обезболивающее влияние утрачивается. Например, местная анестезия может оказаться неэффективной при удалении зуба в случае тяжелого периодонтита.

2. Общие анестетики

2.1. Ингаляционные анестетики

2.1.1 Летучие жидкости

Теории механизма действия общих анестетиков

Эффекты ингаляционных анестетиков не могут быть объяснены одним молекулярным механизмом. Скорее всего многокомпонентное действие каждого анестетика реализуется через множество мишеней. Тем не менее, эти эффекты сходятся на ограниченном числе изменений, лежащих в основе физиологических эффектов. На данный момент существуют липидная и белковая теории анестезии, но ни одна из них пока не описывает последовательность событий, происходящих от взаимодействия молекулы анестетика и ее мишеней до физиологических эффектов.


Рисунок 2 | Ингаляционные анестетики

Активность ингаляционных анестетиков оценивают по минимальной альвеолярной концентрации (МАК). Доза, создающая 1 МАК, предотвращает у половины пациентов движения в ответ на хирургическое вмешательство. Сила общих анестетиков коррелирует с их растворимостью в жирах, что говорит о важности взаимодействия с гидрофильными мишенями. В частности, обнаружение связи между силой анестетика и его липофильностью (правило Мейер-Овертона) дало начало липидной теории механизма действия анестетиков. Липидная теория анестезии утверждает, что анестетики растворяются в двойном липидном слое биологических мембран и вызывают анестезию, достигая критической концентрации в мембране. Наиболее усложненные версии липидной теории требуют, чтобы молекулы анестетиков вызывали пертурбацию (изменение свойств) мембраны.


Рисунок 3 | Правило Мейер-Овертона


Рисунок 4 | В 20 веке было показано, что сила общих анестетиков коррелируют с их способностью ингибировать активность растворимого фермента люциферазы, который физиологически не является мишенью анестетиков, но служит в качестве безлипидной модели белковой молекулы для связывания анестетика.

Современные факты позволяют утверждать, что белки в большей степени, чем липиды, являются молекулярными мишенями для действия анестетиков. Взаимодействие анестетиков с гидрофобными участками белков также объясняет правило Мейер-Овертона. Прямое взаимодействие молекул анестетиков с белками позволяет объяснить исключения из этого правила, так как любые участки связи с белком определяются как размером и формой молекулы, так и растворимостью. Многочисленные физические методы (рентгенодифракция, ЯМР-спектроскопия) подтверждают, что общие анестетики действуют путем непосредственного связывания с амфифильными полостями белковых молекул, а размер связанного участка объясняет эффект «обрубания» свойства (более длинные спирты теряют свойства анестетика).

Механизм действия

Таким образом, общие анестетики изменяют физико-химические свойства липидов мембран нейронов и нарушают взаимодействие липидов с белками ионных каналов. При этом уменьшается транспорт в нейроны ионов натрия, сохраняется выход менее гидратированных ионов калия, в 1,5 раза возрастает проницаемость хлорных каналов, управляемых ГАМК-А рецепторами. Итогом этих эффектов становится гиперполяризация с усилением процессов торможения. Общие анестетики подавляют вход в нейроны ионов кальция, блокируя Н-холинорецепторы и NMDA-рецепторы глутаминовой кислоты; снижают подвижность Са 2+ в мембране, поэтому препятствуют кальций-зависимому выделению возбуждающих нейромедиаторов. Наиболее чувствительны к действию общих анестетиков полисинаптические системы ЦНС — кора больших полушарий (10 13 – 10 14 синапсов), таламус, ретикулярная формация, спинной мозг. К наркозу устойчивы дыхательный и сосудодвигательный центры продолговатого мозга.

Летучие ингаляционные анестетики:

  • постсинаптически усиливают тормозящую передачу путем потенциирования лиганд-управляемых ионных каналов, активируемых ГАМК и глицином;
  • экстрасинаптиески путем усиления ГАМК-рецепторов и ионных токов утечки;
  • пресинаптически за счет повышения базального высвобождения ГАМК.

Ингаляционные анестетики подавляют возбуждающую синаптическую передачу путем снижения высвобождения глутамата и постсинаптически путем ингибирования ионотропных глутаматных рецепторов. Парализующий эффект местных анестетиков включает действие на спинной мозг, в то время как седация/наркоз и амнезия включают супраспинальные механизмы памяти, сна и сознания.

2.1.2. Газовый наркоз

В анестезиологии широко применяют ингаляционный газовый анестетик азота закись (N2O). В конце 1980-х гг. в зарубежную анестезиологическую практику вошел инертный газ ксенон.

Азота закись представляет собой бесцветный газ характерного запаха, хранится в металлических баллонах под давлением 50 атм в жидком состоянии, не горит, но поддерживает горение. Ее смеси с анестетиками группы летучих жидкостей в определенных концентрациях взрывоопасны. В субнаркотических концентрациях (20 — 30 %) азота закись вызывает эйфорию (веселящий газ) и сильную анальгезию. В концентрации 20 % обеспечивает обезболивание в такой же степени, как 15 мг морфина. Закись азота на ГАМК-А рецепторы не влияет. Используется только в комбинациях, так как МАК составляет 104 %.

Инертный газ ксенон считают лучшей альтернативой азота закиси, так как он обладает более выраженным наркозным действием, индифферентностью и экологической безопасностью. Способность ксенона вызвать наркоз была открыта в связи с практикой глубоководных погружений и развитием гипербарической физиологии. Ксенон бесцветен, не горит и не обладает запахом, при соприкосновении со слизистой оболочкой рта создает на языке ощущение горьковатого металлического вкуса. Отличается низкой вязкостью и высокой растворимостью в липидах, выводится легкими в неизмененном виде. Разработана технология ксенонсберегающей анестезии с включением минимального потока и системы рециклинга для повторного многократного использования газа. Такая технология успешно решает важную в практическом отношении проблему дефицита и дороговизны ксенона. В механизме наркозного эффекта ксенона имеют значение блокада циторецепторов возбуждающих нейромедиаторов — Н-холинорецепторов, NMDA-рецепторов глутаминовой кислоты, а также активация рецепторов тормозящего нейромедиатора глицина. При взаимодействии с циторецепторами ксенон выступает как протонсвязывающий кластер и образует комплексы с катионами НСО + , NH2 + , HNCH + . Ксенон проявляет свойства антиоксиданта и иммуностимулятора, снижает выделение гидрокортизона и адреналина из надпочечников.

2.2. Неингаляционные (внутривенные) наркозные средства подразделяют на три группы:

Препараты короткого действия (3 — 5 мин)

  • пропанидин (эпонтол, сомбревин)
  • пропофол (диприван, рекофол)

Препараты средней продолжительности действия (20 — 30 мин)

  • кетамин (калипсол, кеталар, кетанест)
  • мидазолам (дормикум, флормидал)
  • гексенал (гексобарбитал-натрий)
  • тиопентал-натрий (пентотал)

Препараты длительного действия (0,5 — 2 ч)


Рисунок 5 | Общие анестетики для внутривенного введения

Механизм действия

Наиболее широко используемым внутривенный анестетиком является пропофол. Его механизм действия связан с увеличение хлорной проводимости ГАМК рецепторов.

Метогекситал по скорости наступления и выхода из наркоза близок к пропофолу.

Барбитураты использовались для анестезии до введения в практику пропофола. Тиопентал вызывает быстрое наступление и быстрый выход из наркоза при разовом введении, но он быстро накапливается при повторном или пролонгированном введении и таким образом замедляет выход из анестезии. Барбитураты являются лигандами барбитуратных рецепторов. В малых дозах они аллостерически усиливают действие ГАМК на ГАМК А-рецепторы . При этом удлиняется открытое состояние хлорных каналов, возрастает вход в нейроны анионов хлора, развиваются гиперполяризация и торможение. В больших дозах барбитураты прямо повышают хлорную проницаемость мембран нейронов. Кроме того, они тормозят высвобождение возбуждающих медиаторов ЦНС — ацетилхолина и глутаминовой кислоты, блокируют АМРА-рецепторы (квисквалатные рецепторы ) глутаминовой кислоты. Барбитураты обладают церебропротективными свойствами и могут быть использованы с такой целью.

Бензодиазепины используются в основном как анксиолитики и для седации с сохранением сознания.Все бензодиазепиновые рецепторы аллостерически усиливают кооперацию ГАМК с ГАМК А-рецепторами, что сопровождается повышением хлорной проводимости нейронов, развитием гиперполяризации и торможения. Реакция с бензодиазепиновыми рецепторами происходит только в присутствии ГАМК. Ремимазолам - самый молодой бензодиазепин, имеет очень короткое время действия из-за быстрой нейтрализации эстеразами плазмы.

Кетамин химически является производным фенциклидина. Синаптические механизмы действия кетамина многообразны. Он является неконкурентным антагонистом возбуждающих медиаторов головного мозга глутаминовой и аспарагиновой кислот в отношении NMDA-рецепторов. Эти рецепторы активируют натриевые, калиевые и кальциевые каналы мембран нейронов. При блокаде рецепторов нарушается деполяризация. Кроме того, кетамин стимулирует освобождение энкефалинов и β-эндорфина; тормозит нейрональный захват серотонина и норадреналина. Последний эффект проявляется тахикардией, ростом АД и внутричерепного давления. Кетамин расширяет бронхи. При выходе из кетаминового наркоза возможны бред, галлюцинации, двигательное возбуждение (эти нежелательные явления предупреждают введением дроперидола или транквилизаторов).Важным терапевтическим эффектом кетамина является нейропротективный. Как известно, в первые минуты гипоксии мозга происходит выброс возбуждающих медиаторов — глутаминовой и аспарагиновой кислот. Последующая активация NMDA-рецепторов, увеличивая во внутриклеточной среде концентрацию ионов натрия и кальция и осмотическое давление, вызывает набухание и гибель нейронов. Кетамин как антагонист NMDA-рецепторов устраняет перегрузку нейронов ионами и связанный с этим неврологический дефицит.

Самым новым внутривенным анестетиком является дексмедетомидин. Это высокоселективный агонист а2-адренорецепторов с седативными, симпатолитическими, снотворными и анальгетическими эффектами. Его основное действие - в качестве агониста на а2 рецепторы в голубом пятне.

Читайте также: